Browsed by
Month: October 2022

Haunted Houses evaluated by an Architect

Haunted Houses evaluated by an Architect

An architect reviews iconic houses in Psycho, Beetlejuice, House on Haunted Hill, and The Shining. I learned a lot of cool stuff!

Fun fact, the ‘dilapidated’ house he shows at 1:24 looked familiar – and it turns out to be located at 627 15th St, Astoria, OR 97103.

And of course, the Overlook hotel is actually Timberline Lodge – a place I’ve stayed and skied at over the years. I enjoyed the atmosphere so much that I attended a murder mystery party and one of their Halloween ‘Fright Night’ events.

First-person shooter book?

First-person shooter book?

I think the 90’s were an amazing time for game books. This is one I’ve not seen before. It was a series of paired game books that have a first-person style play. You play against another person who is playing at the same time with the companion book. Just like in a real first-person shooter, depending on how you (and your opponent) move around, you can come up behind, in front, or to the side of your enemy as you fight against each other in the dungeon. How does that work? Questing Beast gives us a tour of how this works:

Joe Dever has allowed these books to be published on the internet and be downloaded free-of-charge. Rob Adams, Paul Bonner, Gary Chalk, Melvyn Grant, Richard Hook, Peter Andrew Jones, Cyril Julien, Peter Lyon, Peter Parr, Graham Round, and Brian Williams have also generously offered similar permission for their contributions. Project Aon hosts the books on their free website.

Simplicity is King

Simplicity is King

Rema 1000 is a Norwegian supermarket chain with some clever ads. As someone that is a developer of technology, I agree that simplicity wins over complex every day. I mean it’s not like your smart devices are spying on you, or that employees listen to everything that your smart device hears in your home, hackers can control your devices/door locks/etc, or Alexa’s recordings could be subpoenaed for criminal investigations and indoor cameras given police access… That would just be silly – right. Right?

Dungeons and Dragons 80’s Cartoon figures

Dungeons and Dragons 80’s Cartoon figures

The 1980’s Dungeon’s and Dragon’s cartoon was one of my Saturday morning favorites. I loved the adventures and magical places they went. It turns out Hasbro, like many toy companies, is starting to cater to adult nostalgia via it’s Hasbro Pulse series of toys.

Recently they added figures from the animated series. Currently Hank, Diana, Bobby, Uni, Venger, and Dungeon master have been created. You can also buy them as a Target exclusive.

Using lab grown brain cells to play Pong

Using lab grown brain cells to play Pong

Cortical Labs has taken hundreds of thousands of cortical cells from dissected rodent embryo brains, placed them in a dish, and are being taught to play Pong. The brain cells were collected from rodent embryo brains and placed in high-density multielectrode arrays. The real-time electrophysiological activity of defined motor regions was gathered to move the pong paddle. If a successful interception occurred, a predictable stimulus was delivered across all electrodes simultaneously at 100Hz for 10ms (briefly interrupting the regular sensory stimulation). If this activity did not result in an interception of the ball by the paddle, an unpredictable stimulus was delivered (150mV voltage at 5Hz for 4 seconds). This predictable/unpredictable stimulus response is apparently a natural response of brain cells.

Apparently this ‘wetware‘ hybrid approach of using real brain cells with electro-chemical interface exhibited better performance more quickly than current AI methods.

While fascinating and ground breaking I must admit it is also disturbing. It raises some serious ethical questions, especially in countries where scientific ethics differ greatly. To what degree do we want to augment our computational devices with real animal – or even human – brain cells? How could those embryonic brain cells be sourced since it seems to imply the death of the animal/person? What if we could use such devices in our own brains to enhance our own learning powers? And the bigger question: what is the end results/goals – and if we even should be considering these kinds of “wetware” brain cell augmented devices?

Read more about it here.

cool windows tricks

cool windows tricks

Reset your graphics driver – Win + CTRL + SHIFT + B

Remembering a wifi password you entered forever ago:
c:\> netsh wlan show profile
< shows a list of wifi profiles you have connected to >
c:\> netsh wlan show profile <wifiProfileName> key=clear
< shows the wifi password you last entered >

Message every single windows system on the network
c:\> msg * <message>

Hackertyper – Hit F11 to fullscreen your browser and then look like a hacker.
https://hackertyper.net/

FakeUpdate – go to the website, get on your friend’s computer, load the update screen for that OS, hit F11 to go fullscreen, and then see how long they’ll sit there before resetting.
https://fakeupdate.net/

Good radiation detectors

Good radiation detectors

With nuclear blustering starting up again, one can take a trip back to the 80’s when world-wide nuclear Armageddon was literally just 90 minutes away at any time – and some important information about radiation detectors and Geiger counters.

Back in the day, these old yellow box-like Civil Defense Geiger Counters were scattered around just about every community:

There were numerous different models that operated differently depending what they measured. These models are now over 50 years old. Radiation detectors require calibration and regular testing to give anything remotely like a good reading. You can often find these at military surplus stores for well under $100, but unless you test them against known sources and levels it’s difficult to trust detectors this old. Especially because they were often abused/poorly stored.

Today, you can find a lot of radiation detectors on the web. However, one needs to understand what they are buying before they jump in. Two of the biggest factors for a detector are: radiation range and radiation type.

Why range matters: 3.6 Roentgen – Not great, not terrible

The vast majority of Geiger counters you find online are for low radiation dosages. How low? They often max out at values like 32 millirem (1/1000th of a rem) per hour. While this is great for the amounts of radiation the average person might encounter via radon, food, or minerals, how would it fare during a nuclear war or serious nuclear accident?

According to the scientists at the Oak Ridge National Laboratory in their 1987 “Nuclear War Survival Skills” document, “Instruments that measure only milliroentgen-range dose rates are sold for war use by some companies. Since most Americans have no idea what size of radiation doses would incapacitate or kill them, and do not even know that a milliroentgen is 1/1000 of a roentgen, some people buy instruments that are capable of measuring maximum dose rates of only one roentgen or less per hour.” (One roentgen is equivalent to one rem.)

The book instead says that a meter that “can measure one roentgen per hour (rem) is far too low to be of much use in a nuclear war.” So, just like the instruments at Chernobyl that could only register 3.6 roentgen/hr, devices that only measure millirem/hour are essentially useless during a large nuclear accident or attack. They would almost immediately be maxed out and tell you very little.

What you need is a high-range radiation detector – something that can read up to hundreds of rem/hour – if you want it for a survival tool after a serious nuclear accident or war.

Detected Radiation Types

The next important factor is what TYPE of radiation a detector can measure. There are 4 major types that would be important in a nuclear accident or attack. Alpha, Beta, Gamma, and X-ray radiation. Alpha radiation is the lowest penetrating type of radiation, clothing or even a sheet of paper is sufficient to protect you from alpha radiation. Its biggest danger is ingesting alpha particles by inhaling or eating contaminated dust/food. They are dangerous if they get inside your body – this is why wearing a good mask is important.

Beta particles are slightly more penetrative than alpha, but still blocked easily by wood or thin metal layers.

Gamma radiation is much more dangerous. It can penetrate all but thick concrete, lead, or other heavy shielding. Its penetrative power is the most dangerous.

X-ray radiation is pretty self explanatory as we are familiar with them from dentist offices to all sorts of medical diagnostics. X-rays are usually short lived and emitted in tremendous amounts during nuclear blasts.

For military purposes, most of their detectors only record X-ray and gamma levels. These are by far the most dangerous types of radiation. Your detector should at least detect those 2 kinds of radiation at a minimum.

The biggest thing to know is that after a nuclear attack or serious accident, there will be rising and falling amounts of different nucleotides over time as higher energy sources decay to lower ones:

The most important factor is that time is your friend. The first 2-5 days are the most critical time to stay sheltered and to protect yourself from contamination and fallout:

This would be done primarily by staying in a safely shielded/enclosed shelter, taking thyroid pills, wearing masks to avoid inhaling particles, and by only eating clean food and water. Most guides would recommend at least a month’s worth of supplies before any help would arrive.

Calculating your dose

When reading a radiation detector, reading the radiation level alone is not enough information to figure out if you are in danger. Dosage of radiation is a calculation of radiation level AND time of exposure. Most detectors read values in microsieverts (uSv), millisieverts (mSv), or rontgen per hour (rem). To calculate your dosage, you need to calculate the radiation rate along with the time you were exposed to it. If you are in a 10mSv (or 1 rem) environment for 1 hour, you would receive a 10mSv (1 rem) dosage. If you were in that environment for 2 hours, you would get a 20mSv or 2 rem dosage. If you were only in that environment for 30 minutes, you would get half that dose – 5mSv or 0.5 rem.

Here’s some dose rates of some places/objects to give you an example, or watch this excellent video by Veritasium

uSv/hrrem/hrActivity
0.17-0.300.000017Average background radiation
2.50.00025Flying at 30,000 feet – https://www.youtube.com/watch?v=XuQgVGDENbU
5.250.000525Chernobyl near the facility viewing area – https://youtu.be/9DWnjcSo9J0
5.70.00057Maximum dose rate to reach the 5000 mrem/year max for US radiation worker
6.850.00068Rate to reach maximum reasonably safe dose (60mSv) in one year
100-1250.01001.5km from the Fukushima plant in Japan in 2011
https://www.youtube.com/watch?v=SD0kTKPPN40
6000.0600Chernobyl firefighter’s clothes in basement of Pripyat hospital in 2017 https://www.youtube.com/watch?v=C4g3FkXUhx0
15000.15Chernobyl firefighter’s clothes in basement of Pripyat hospital in 2014
https://www.youtube.com/watch?v=TRL7o2kPqw0&t=466s
11,000,00011,000Workers clearing the Chernobyl roof as bio-robots (fatal dose in 115 seconds – most got 40-90sec worth)

So what constitutes a dangerous amount of radiation?

The average person receives about 1.5 to 3.5 millisievert (mSv) per year via normal background radiation – or around a reading of 0.17-0.39 microsieverts (uSv) per hour (a microsievert is 1/1000 of a millisievert).

Example: Calculation of the average full-year dose is:
0.17uSv/hour * 24 hours/day * 365 days/year = 1489.2 uSv/year = 1.4892 mSv/year. (or 0.14892 rem/year)

Oak Ridge National Laboratory in their 1987 “Nuclear War Survival Skills” document say that in the event of a nuclear war – ‘small’ doses of around 6 rem per day should “produce no incapacitating symptoms. The human body usually can repair almost all radiation damage if the daily doses are not too large.” Outside of war time, regulations say a US radiation worker should have no more than 5 rem, or 50 mSv for a WHOLE YEAR exposure. That would be an environment with no more than 0.00068 rem/6.8 uSv per hour exposure. After a war, if you wanted to stay below a 6 rem/60 mSv per day exposure – you would not want to be in any environment over (a frighteningly high) 2.5mSv/hr (or 2500uSv/hr). You might survive those rates, but would almost certainly would experience serious issues because your whole year dose would be a terrifying 2190 rem/yr (21,900 mSv/yr) vs a normal exposure of <0.2 rem/yr (2 mSv/yr)

For whole doses, you are now looking at these kinds of effects when you calculate the dose over time:

mSvremEffect
0.0350.0035Cumulative dose of a cross-country US flight
0.10.011 chest X-ray
2.00.21 year of average background radiation
505Maximum yearly dose for US radiation worker
606Limit of maximum reasonably safe annual dose
808Astronaut who spends 6 months in space on space station
50-1005-10changes in blood chemistry. Possible later effects or chromosomal damage
12012Average reported Chernobyl liquidator dosage
16016Radiation smoker’s lungs receive in one year (from radioactive Pu and Pb in tobacco)
25025Average dose of a Chernobyl bio-robot during their 40-90 second work session on the roof of Chernobyl. https://youtu.be/XzfsfYnuc8c
50050Nausea, within hours. Reduction of white blood cell count.
70070Vomiting
75075Hair loss, within 2-3 weeks
90090Diarrhea
1000-2000100-200Mild radiation sickness within a few hours: vomiting, diarrhea, fatigue; reduction in resistance to infection.
2000-3000200-300Serious radiation sickness effects as above plus hemorrhage. Exposure is lethal to 10-35% of the population after 30 days.
3000-4000300-400Serious radiation sickness; also marrow and intestine destruction; Death in 50-70% of cases.
4000-10,000400-1000Acute illness, early death and lifelong health effects. Death in 60-95% of cases.
10,000-50,0001000-5000Acute illness, early death in days; Death in 100% of cases.

Modern radiation detection

So with that background, what kind of detector should you buy? What you need during a serious nuclear accident is a radiation detector that can minimally detect X-rays and gamma rays up to 300rem (3000mSv) with trustworthy results. This is what is used by military forces around the world and the range those old yellow civil defense devices could measure.

Unfortunately, when tested, a great number of high-range radiation detectors give dangerously inaccurate results. Many that are sold on the internet are not calibrated nor tested – when many were tested by Oak Ridge, they often reported within 20% of true values on lower doses, but were often off by more than 80% at higher ranges. They found some read 100 rem/hour when the true radiation level was closer to 500 rem/hour. Further, many devices will most likely not survive EMP that would occur during a nuclear attack.

So, maybe we should steer clear of things you buy on Amazon or eBay. Their dose rates are too low, or are likely dangerously inaccurate. What you need is a real professional tool, and that means some serious money.

Ecotest MKS-05

The cheapest high-range models I could find with a reasonable reputation are also ones seen in Ukraine around Chernobyl: Ecotest MKS-05 Terra-P detectors. They measure from 0.1 uSv to 9,999mSv/hr (±25%), detects X-ray and gamma and a calculated beta exposure. With a ±25% range of error it is not great, but definitely useful as a high-range device. It also acts as a dosimeter. They cost around $400 and seem to be well reviewed. Just be sure to buy them from a reputable vendor.

The next high-range model with much better tolerances and seems to be used by scientists around Chernobyl are the Thermo Scientific RadEye survey meters.

Some of their detectors are able to register from uSv all the way to 10 Sv/hr (1000 rem). Noteably the RadEye PRD-ER4, SPRD-ER, and G-Ex and GF-Ex. These models cost an eye-watering $1900-$2300. The GF-10-Ex can reach 3 Sv/hr (300 rem) and can be found for around $1650

Thermo Scientific RadEye G-Ex

Besides those, you might also consider the lower dosage meters in the B series:

RadEye B20-ER

Youtube videos often use the B models in contaminated zones like Chernobyl – like the Thermo Scientific RadEye B20-ER. These kinds of devices are for first responders. They detect alpha, beta, gamma, and X-ray radiation. Unfortunately, even the -ER (extended range) model is limited to reading from 0.2uSv to 100 mSv/hr (10 rem/hr). They also calculate cumulative doses so you don’t need to keep a mental calculation as you move through different radiation levels. Unfortunately, they also cost about $2000 – so they are also very expensive.

Gamma-Scout

Gamma-Scout is a German made device with good calibration, is well reviewed, and used by numerous people during radiation scouting events around Chernobyl/Fukushima. It registers alpha, beta and gamma emissions from 0.1 to 1,000 μSv/h. So, it’s not useful as the RadEye due to the limited range, but good for lower-dose environments. Costing around $450, you could buy this and the Ecotest for under $1000 and likely cover your bases.

Links:

Hunger Stones

Hunger Stones

Wenn du mich siehst, dann weine – “If you see me, then weep”

Inscription on a rock in the Elbe River near the northern Czech town of Děčín, close to the German border

Not only is Europe battling astronomical fuel prices, but also one of the worst droughts in almost 500 years. How bad? Historically bad – and we know because it’s literally written in stone.

Water levels are at their lowest in decades – and rocks are appearing from under the shoreline with grim and frightening inscriptions. These rocks inscribed with dates and warnings even have names. They’re called Hungerstein or Hunger Stones. These stones were embedded into a river during droughts to mark the water level as a warning to future generations that they will have to endure famine-related hardships if the water sinks to this level again.

The earliest readable year on the Děčín stone is 1616. Traces of inscriptions relating to much earlier droughts, including 1417 and 1473, have been largely eroded over time. Ten later dry years, between 1707 and 1893, are also recorded. Most hunger stones are found on the Elbe, which flows from the north of what is now the Czech Republic through former Bohemia and then Germany before reaching the North Sea near Hamburg. Others appear on the Rhine, Danube and Moselle.

Links:

Where Zillow’s AI went wrong

Where Zillow’s AI went wrong

What went wrong with Zillow’s $500 million AI-based home purchasing program? It was a host of factors, but it highlights a unique problem in AI.

It turns out you can’t just set up an AI model and let it crank for years. You need to pay attention to something called drift. There are ways of telling if your AI model is drifting by monitoring model accuracy, outputs, and inputs on an ongoing basis and re-balancing them.